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Abstract

Shape evolution for Ne, Mg, Si, S, Ar, and Ca isotopes have even number of

neutrons and that are claimed to be in or nearby the A ≈ 30 mass region of

the nuclear chart are studied using covariant density functional theory (CDFT),

based on finite range NN-interaction force represented by NL3∗ and DD-ME2 and

zero finite range NN-interaction force represented by DD-PC1. The ground state

shape is found to be both oblate and prolate in 26 Mg and 26Si. The spherical

shape is obtained for the Ca isotopes, and for nuclei that have magic neutron

number N = 8 and 20. The rest of the isotopic chain has only one minimum and

alternate between prolate and oblate shapes. Physical properties are calculated

at the location of ground-state deformation as the change with neutron number

(N) and proton number (Z), such as the binding energy, two-neutron separation

energies, proton, neutron and charge radii. In general, a smooth change in these

properties is found, except near N = 8 and 20 one can see a sharp change, which

reflects the sudden change in the ground state deformation in the neighboring

nuclei. A very good agreement is found with the available experimental data, HF,

and FRDM models.
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Chapter 1

Introduction

The shape deformation is one of the most fundamental properties of an atomic

nucleus, very few nuclei have a spherical shape in their ground state and a variety

of shapes can be observed, at a very close energy level[1–5]. Inside the atomic

nucleus, protons and neutrons are organized in shells similar to the shells where

the electron is organized around the nucleus in the atom. When proton or neutron

shells are filled with 2, 8, 20, 28, 50, 82, or 126 nucleons, these numbers are called

”magic” and nuclei assume spherical shapes. In contrast, nuclei lose their spherical

shape and become ”deformed” when the number of nucleons is not a magic [6].

Many experimental studies and theoretical approaches to shape deformation

have been performed in recent years, such as Coulomb excitation, proton inelastic

scattering, self-consistent relativistic mean-field (RMF), Hartree-Fock-Bogolibov

(HFB), and macroscopic-microscopic model[7–11].

The shape of the even-even N = Z nuclei 24Mg, 28Si, 32S, 36Ar, and 40Ca

were studied using axially deformed relativistic mean-field theory by Patra and

Praharaj[12]. Large deformations for the ground state have been found for these

nuclei.

Patra et al.[13, 14] used the axially deformed relativistic mean-field approach

to study the entire structural properties of Ne, Mg, Si, S, Ar and Ca nuclei. They

investigated the nuclei between the neutron dripline and proton dripline, using
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three different parameter sets(NL2, NLSH, and TM2). They obtained a very

good agreement with the experimental results, especially for the TM2 force. The

structure of Ne, Na, Mg, Al, Si, and S nuclei near the neutron drip-line region

is also studied using non-relativistic skyrme Hartree-Fock formalism by the same

authors.

Hirata et al.[15] performed a systematic investigation of several light mass

nuclei(24Mg and 40Ca). In his investigation, he used triaxial relativistic mean-field

(RMF), and found that the ground state shape is spherical for the 40Ca nucleus

and a deformed prolate shape for 24Mg. These results are in accordance with the

experimental data and the non-relativistic density-dependent Hartree-Fock results.

Similarly, Lalazissis et al. [16] studied the ground-state properties of nuclei

with atomic numbers 10 ≤ Z ≤ 22. They used NL-SH parameter set, RMF results

provided good agreement with the available empirical data. Several isotopes of

Mg, Si and S near the neutron drip line were found to have two ground state

minima, oblate and prolate.

Y. Kanada-Enyo[17] studied the deformation of 28Si by focusing on the shape

coexistence of the prolate and oblate neutron structure, based on the method of

antisymmetrized molecular dynamics. By using the MV1+G3RS force. His result

supports an oblate ground-state.

Yao et al. [18] carried out RMF study of Mg isotopes, and found that the

triaxiality has no effect on the low-lying states of most Mg isotopes, except for
26Mg.

Ying Wang, et al.[19] studied the ground-state properties of even-even nuclei

with Z = 10 − 20 using the covariant density functional theory and the PC-PK1

parameter set. Their results show that the binding energy of these nuclei under

study is not affected by the inclusion of γ degree of freedom. However, the authors
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have found that triaxiality strongly affects the rotational correction energy. They

also studied the effect of the phenomenological collective corrections on the binding

energy and the N = 20 shell gap. They found that the deviation of the binding

energy due to these corrections is reduced from 2.22 MeV to 1.60 MeV and they

got a better reproduction of the N=20 shell gap is better .

Dong, G., et al.[20] performed a systematic study on the Ne and Mg isotopes,

and their ground state properties using the macroscopic-microscopic model. The

authors used isospin-dependent Nilsson potential. They obtained large deforma-

tions for the N = 20 isotones, 30Ne and 32Mg. They found that there exist triaxial

deformation (or softness) in the island of inversion. They also showed that for the

N = 18 and 20 isotones, shape coexistence can be observed with the two shapes

being axial, one prolate and the other is oblate.

Density functional theories (DFTs) are extensively used to investigate and

understand several nuclear phenomena. This is done using energy density func-

tionals(EDFs) approach, and are approximated by the self-consistent mean-field

models. They have been successfully applied in atomic physics[21, 22], where the

potential is based on the Coulomb interaction with no phenomenological adjust-

ments, and the system is externally bound. However, in nuclear physics, the situ-

ation becomes more complicated since the nucleus is a self-bound system and the

spin and isospin degrees of freedom play a crucial part and cannot be ignored[17].

One of the most attractive nuclear DFTs is the covariant density functional

theory(CDFT)[23–29] based on the energy density functionals(EDFs), has achieved

great success in the description of ground and excited-state properties of both

spherical and deformed nuclei throughout the nucleic chart [28, 29].

In this study, we investigate even-even isotopes for a region of the mass num-

ber, A ≈ 30, within the CDFT framework by using three parameter sets: The
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density-dependent meson-exchange DD-ME2[26, 30], the density-dependent point-

coupling DD-PC1[31] and the nonlinear meson nucleon coupling NL3*[22]. These

parameters provide a good description of different ground states over the entire

nuclei chart.

This thesis is organized as follow: In chapter 2, the formulation of the RMF

theory for the triaxial deformation will be presented. The results of the investiga-

tions of the ground-state properties such as binding energy, two-neutron separation

energy and the radii for neutrons and protons are discussed and presented in Sec-

tion 3. Section 4 is devoted to the summarize the results of the present study.
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Chapter 2

Formalism

2.1 Covariant Density Functional Theory

The Density functional is a tool for a microscopic description of nuclei. It is

successful in determining the properties of nuclear ground states such as binding

energies, radii, or deformation parameters [32, 33]. Three types of models have

been developed to provide a relativistic density functional, the nonlinear meson

nucleon coupling model, the density-dependent meson nucleon coupling model, and

a density-dependent point coupling model. The main difference between them is

the treatment of the range of interaction, mesons, and density dependence. The

interaction in the first two classes has a finite range, while the third class uses

zero-range interaction [34–37].

A classical relativistic field theory starts from a number of fields qj(x). Their

dynamics is determined through a Lagrangian density L(q, ∂µq, t) and the varia-

tional principle [38].

δ
∫
∂4xL(q, ∂µq, t) = 0 (2.1)

∂µ( ∂L

∂(∂µqj)
)− ( ∂L

∂qj
) = 0 (2.2)
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2.1.1 The Lagrangian density

from the following Lagrangian density [39, 40]:

L = LNucleon + LMeson + Lint (2.3)

It contains free nucleons described by the Lagrangian density

LNucleon = ψ̄ (iγµ · ∂µ −m)ψ (2.4)

where m is the bar nucleon mass, and ψ is a Dirac spinor. The Lagrangian for the

free mesons contains the following contributions:

Lσ = 1
2(∂µσ∂µσ −m2

σσ
2), (2.5)

Lπ = 1
2(∂µπ∂µπ −m2

ππ
2), (2.6)

Lω = −1
2(1

2ΩµνΩµν −m2
ωωµω

µ), (2.7)

Lρ = −1
2(1

2
~Rµν

~Rµν −m2
ρρµρ

µ), (2.8)

The Lagrangian for photon

LA = −1
4(~Fµν ~F µν) (2.9)
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where mσ, mπ, mω, and mρ are the rest masses of mesons, and the Ωµν , ~Rµν , and
~Fµν are the field tensors given by these equations :

ωµν = ∂µΩν − ∂νωµ, (2.10)

~Rµν = ∂µρν − ∂νρµ, (2.11)

~Fµν = ∂µAν − ∂νAµ (2.12)

The interaction between the nucleons and the mesons described by given La-

grangian

Lint = −gσψ̄ψσ − gωψ̄γµψωµ − gρψ̄γµ~τψ~ρµ − eψ̄γµ(1− τ3

2 )ψAµ (2.13)

with the coupling constants gσ, gω and gρ.

2.1.2 The meson-exchange model

In the meson exchange model the nucleus is described as a system of point-

like nucleon, Dirac spinors, coupled to mesons and the photons. The nucleons

interact by the exchange of several mesons, namely a scalar meson s and three

vector particles, σ, ω, ρ, and a photon [41, 42]. These mesons are defined by three

quantum numbers; spin (J), parity (P) and isospin(T). Mesons that participate in

this interaction are [35] :

1. The isoscalar scalar σ meson, has quantum numbers (J = 0, T = 0, P = 1),

and the corresponding field is a scalar field produce attraction.
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2. The isoscalar vector ω meson, has quantum numbers (J=1, T=0, P=-1), and

the corresponding field is a vector field produce the repulsion.

3. The isovector vector ρ meson, has quantum numbers (J=1, T=1, P=-1), and

it couple to the iso vector current.

Starting on a more fundamental level, by introducing a relativistic Lagrangian

describing point-like nucleons interacting through the exchange of different types

of mesons.

L = ψ̄ (γ(i∂µ − gωω − gρ~ρ~τ − eA)−m− gσσ)ψ

+1
2(∂σ)2 − 1

2m
2
σσ

2 − 1
4ΩµνΩµν + 1

2m
2
ωω

2 (2.14)

−1
4
~Rµν

~Rµν + 1
2m

2
ρ~ρ

2 − 1
4FµνF

µν

To treat the density dependence in this model Boguta and Bodmer [43] replacing

the σ mass term by a quartic σ-potential of the form:

U(σ) = 1
2m

2
σσ

2 + 1
3g2σ

3 + 1
4g3σ

4 (2.15)

and the ω mesons, replacing the mass term by a quadratic a potential of the form:

U(ωµ) = 1
2m

2
ωω

µωµ + 1
4c3(ωµωµ) (2.16)

and the ρ mesons, replacing the mass term by a quadratic a potential of the form:

U(~ρµ) = 1
2m

2
ρ~ρ
µ~ρµ + 1

4c3(~ρµ~ρµ) (2.17)

The Lagrangian (2.14) contains as parameters the meson masses mσ, mω, and mρ

and the coupling constants gσ, gω, and gρ, and e is the charge of the protons and

it vanishes for neutrons.
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The density-dependent meson-nucleon coupling model has an explicit density de-

pendence for the meson-nucleon vertices. The coupling constant dependence is

defined as:

gi(ρ) = gi(ρsat)fi(x) (2.18)

i can be any of the three mesons σ, ω, and ρ where the density dependence is

given by

fi(x) = ai
1 + bi(x+ di)2

1 + ci(x+ di)2 . (2.19)

for σ and ω and by

fρ(x) = exp(−aρ(x− 1)). (2.20)

for the ρ meson.

x is defined as the ratio between the baryonic density ρ at a specific location

and the baryonic density at saturation ρsat in symmetric nuclear matter. The

eight parameters are not independent, but constrained as follows: fi(1) = 1,

f
′′
σ (1) = f

′′
ω (1), and f ′′

i (0) = 0. These constrains reduce the number of independent

parameters for density dependence to three. In our study this model is represented

by the parameter sets NL3*, and DD-ME2 given in table 2.1.
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Table 2.1: NL3*, DD-ME2, and DD-PC1 parameterizations in RMF La-
grangian

parameter NL3* DD-ME2 DD-PC1

m 939 939 939

mσ 502.5742 550.1238 0

gσ 10.0944 10.5396 0

aσ 0.00000 1.3881 -10.04616

bσ 0.00000 1.0943 -9.15042

cσ 0.00000 1.7057 -6.42729

dσ 0.00000 0.4421 1.37235

mω 782.600 783.000 0

gω 12.8065 13.0189 0

aω 0.00000 1.3881 5.91946

bω 0.00000 0.9240 8.86370

cω 0.00000 1.4620 0

dω 0.00000 0.4775 0.65868

mρ 763.000 763.000 0

gρ 4.5748 3.6836 0

aρ 0.00000 0.5647 0

bρ 0.00000 0.0000 1.83595

dρ 0.00000 0.0000 0.64025

2.1.3 The point-coupling model

The point-coupling model is another way to construct a relativistic density

function. In this model, the mesons exchange replaced by interaction between
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the nucleons. Nonlinear point-coupling models have been applied successfully to

describe infinite nuclear matter [46, 47].

The Lagrangian for the density point coupling model is given by:

L = ψ̄ (iγµ · ∂µ −m)ψ − 1
2αS(ρ̂)

(
ψ̄ψ

) (
ψ̄ψ

)
− 1

2αV (ρ̂)
(
ψ̄γµψ

) (
ψ̄γµψ

)
− 1

2αTV (ρ̂)
(
ψ̄~τγµψ

) (
ψ̄~τγµψ

)
− 1

2δS
(
∂vψ̄

) (
∂vψ̄

)
− eψ̄γ · A(1− τ3)

2 ψ (2.21)

It contains the free-nucleon Lagrangian, the point-coupling interaction terms. The

derivative terms accounts for the leading effects of finite-range interaction [26].

This model contains isosclar-scalar, isoscalar-vector, and isovector-vector. It is

represented by the DD-PC1 as has been seen in table(2.1).

2.2 The Hamiltonian and the equation of motion

From the Lagrangian density in Eq.(2.14), the Hamiltonian operator is:

H =
∫
∂3r(

∑
m

Pm − ∂tφm − L(r)) (2.22)

where, φm = (ψ, σ, ωµ, ~ρµ, Aµ) and Pm is the momentum conjugate operator

Pm = ∂L
∂(∂φm/∂t)

(2.23)

The Hamiltonian density of the nucleon - mesons interacting is

H = Hψ +Hσ +Hω +Hρ +HA +Hint (2.24)



12

where:

Hψ = ψ̄(α · p+ βm)ψ, (2.25)

Hσ = −1
2σ∆σ + Uσ(σ), (2.26)

Hω = 1
2ωµω

µ − Uω(ω), (2.27)

Hρ = 1
2 ~ρµ∆ ~ρµ − Uρ(ρ), (2.28)

and

HA = 1
2AµA

µ (2.29)

Hint = (gσσψ̄ψ + gωωµψ̄γ
µψ + gρ ~ρµψ̄γ ma

µ~τψ + e(1− τ3

2 )Aµψ̄γµψ) (2.30)

In the Hartree method, the stationary Dirac equation for the nucleons is:

ĥDψi = εiψi (2.31)

where ĥD is the Hamiltonian of the nucleons with mass m

ĥD = α(−i∇− V (r)) + V0(r) + β(m+ S(r)) (2.32)

the Hamiltonian contains the attractive scalar field S(r)

S(r) = gσσ(r) (2.33)
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and the repulsive time like component of the vector V0(r)

V0(r) = gωω0(r) + gρτ3ρ0(r) + e
1− τ3

2 A0(r) (2.34)

and the magnetic potential V(r)

V (r) = gωω(r) + gρτ3ρ(r) + e
1− τ3

2 A(r) (2.35)

Note that in these eqnarray, the four-vector components of the vector field (ωµ, ρµ, Aµ)

are separated into the time-like (ω0, ρ0, A0) and the space-like components [ω =

(ωx, ωy, ωz), ρ = (ρx, ρ y, ρz), A = (Ax, Ay, Az) ].

The corresponding mesons Fields and the electromagnetic field are determined by

the Klein-Gordon equations:

(−∇2 +m2
σ)σ(r) = −gσρs(r)− g2σ

2(r)− g3σ
3(r) (2.36)

(−∇2 +m2
ω)ω0(r) = gωρν (2.37)

(−∇2 +m2
ω)ωµ(r) = gωjµ (2.38)

(−∇2 +m2
ρ)ρ0(r) = gωρ3 (2.39)

(−∇2 +m2
ρ)~ρµ(r) = gρ~jµ (2.40)

−∇2A0(r) = eρp(r) (2.41)
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−∇2Aµ(r) = eρpµ(r) (2.42)

with source terms involving the various nucleonic densities and currents

ρs(r) =
N∑
i=1

ψ̄i(r)ψi(r) (2.43)

ρν(r) =
A∑
i=1

ψ+
i (r)ψi(r) (2.44)

ρ3(r) =
A∑
i=1

ψ+
i (r)τ3ψi(r) (2.45)

ρp(r) =
A∑
i=1

ψ+
i (r)(1− τ3

2 )ψi(r) (2.46)

jµ(r) =
A∑
i=1

ψ̄i(r)γµψi(r) (2.47)

~jµ(r) =
A∑
i=1

ψ̄i(r)γµ~τψi(r) (2.48)

In the ground-state solution for an even-even nucleus, spatial vector A(r) is ne-

glected in the calculations, because the coupling constant of the electromagnetic

interaction is small compared with the coupling constant of the mesons, and there

are no currents (time-reversal invariance) [35].

The components of the vector ω and ρ mesons lead to the interactions between

possible currents. For the ω meson the interaction is attractive for all combinations

(pp, nn, pn), and for ρ mesons it is attractive for pp and nn currents but repulsive



15

for pn currents [36]. The shape coexistence in CDFT framework depends on the

spatial components of ω meson, so there are only two parameters (the mass mω

and the coupling constant gω) of the ω meson define the properties of the shape

coexistence [Eqs.(2.35, 2.38, 2.40)].

The solution of the CDFT equations corresponds to the ground state of the nucleus

it is corresponding to a local minimum in the potential energy surface, so to obtain

the solution for any point we used the constrained of quadrupole mass moment.

The constrained calculations are performed by imposing constraints on both axial

and triaxial mass quadrupole moments [2]. The method of quadratic constraints

uses an unrestricted variation of the function

〈Ĥ〉+
∑
µ=0,2

C2µ(〈Q̂2µ〉 − q2µ)2 (2.49)

where 〈Ĥ〉 is the total energy, (〈Q̂2µ〉 denotes the expectation values of mass

quadrupole operators,

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2 (2.50)

where: q2µ is the constrained value of the multipole moment.

C2µ is the corresponding stiffness constant.∑
µ=0,2 λµQ̂2µ is the quadratic constraint adds an extra force term to the system

whereλµ = 2C2µ(〈Q̂2µ〉 − q2µ)2

This term is necessary for self consistent solution to force the system to a point in

deformation space different from a stationary point. [2]
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2.3 Pairing correlations

The BCS theory which can accommodate the pairing correlations in the

ground states of atomic nuclei are presented [48, 49]. In mean field theory, The rel-

ativistic Hartree-Fock-Bogolibov model provides a description to particle-particle

(pp) correlation used by pairing field potential ∆̂, and particle-hole (ph) correla-

tion by self consistent field potential.

We take |φ > is the Slater determinate that represents the vacuum with quasi-

particle [50], and the αk, α+
k is the single-nucleons creation and annihilation oper-

ator which:

αk =
∑
n

UnkC
+
n + VnkCn (2.51)

where n is the index refers to original basis, and U,V are the Hartree - Bogoluibove

wave function determined by variational method.

In the presence of pairing the single-particle density matrix is generalized to two

densities: the normal density ρ̂ and parity tensor K̂

ρnn′ =< φ|C+
n Cn|φ > (2.52)

Knn′ =< φ|CnCn|φ > (2.53)

The total density functional is :

ERHB = ERMF [ρ] + Epair[k] (2.54)
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where

ERHB[ψ, ψ̄, σ, ωµ, ~ρµ, Aµ] =
∫
d3rH(r) (2.55)

ERMF =
A∑
i=1

∫
d3rψ+

i (αp+ βm)− 1
2(∇A)2 +

1
2e
∫
d3rjµp Aµ + 1

2

∫
d3r[αsρ2

s + ανjµj
µ + αTV ~jµ · ~jµ + δρsρs] (2.56)

and the Epair[k] is

Epair[k] = 1
4
∑
n1n1

′

∑
n2n2

′
Kn1n

′
1
< n1n1

′|V PP |n2n2
′
> Kn2n2

′ (2.57)

where < n1n
′
1|V PP |n2n

′
2 > is the matrix element of the two body interaction.

V pp(r1, r2, r
′

1, r
′

2) = −Gδ(R−R′)P (r)P (r′) (2.58)

R = 1√
2

(r1 + r2) (2.59)

r = 1√
2

(r1 − r2) (2.60)

P (r) = ( 1
4πa2 )3/2 exp −r

2

2a2 (2.61)

The RHB-coefficients U and V are obtained by the variational:

 hD −m− λ ∆

−∆∗ −hD +m+ λ


 UK

VK

 = EK

 UK

VK

 (2.62)
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In (RMFT) the single nucleons has Dirac Hamiltonian hD is a given in Eq.(2.31),

λ is the chemical potential, m is the mass of nucleons, and ∆ is the pairing field

which is :

∆n1n
′
1

= 1
2
∑
n2n

′
2

< n1n
′

1|V PP |n2n
′

2 > Kn2n
′
2

(2.63)

and

 UK

VK

 (2.64)

it is an eignvector.

2.4 Nuclear shape and deformation

The deformation of the ground state(the nuclear shape), is one of the most

fundamental properties of an atomic nucleus, along with its mass and radius. A

nucleus may take different shapes varying from spherical to quadrupole (prolate,

oblate), and higher order multipole deformations [51].

The instantaneous coordinate R(t) of a point on the nuclear surface at (θ, φ) in

terms of the spherical harmonics:

R(θ, φ) = Ravg[1 +
∑
λ

λ∑
µ=−λ

αλµYλµ(θ, φ)] (2.65)

In the first case when (λ = 0), that gives the monopole, and λ = 1, it is give

the dipole deformation, but the important point for our study is when (λ = 2),

which give the quadrupole deformation. For a quadruple-deformed nucleus with

elliptical shape we can distinguish a coordinate frame defined by the three axes

of deformation. For example we can define the long axis as z, the short axis as
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x and the intermediate axis as y (other choices are allowed as well). In this case

we have five parameters αλµ , and this five parameters can be reduced to two real

parameters α20, α22. We defined Hill-Wheeler coordinate in terms of α20 and α22

α20 = β · cos γ (2.66)

α22 = 1√
2
β · sin γ (2.67)

We can connect the quadrupole constraint (2.50) with β, γ

β =
√

4π
5
Q

r2 (2.68)

where

Q =
√
Q2

20 +Q2
22 (2.69)

γ = tan−1(Q22

Q20
) (2.70)

If we substitute Eqs .2.66,2.67 in Eq .2.65, then we obtain :

R(θ, φ) = Ravg[1 + β

√
5

16π (cos γ(3 cos2 θ − 1) +
√

3 sin γ sin2 θ cos 2φ)] (2.71)

Then we can calculate the increments of the three semi-axes as a function of β

and γ

Rx = R(π2 , 0) = Ravg · [1 + β ·
√

5
4π · cos(γ − 2π

3 )] (2.72)

Ry = R(π2 ,
π

2 ) = Ravg · [1 + β ·
√

5
4π · cos(γ + 2π

3 )] (2.73)

Rz = R(0, 0) = Ravg · [1 + β ·
√

5
4π · cos(γ)] (2.74)

The shape can have axial symmetry, that in the nucleus have an ellipsoid shape and

elongated along one of the axis. If it elongated along z-axis it will be prolate axial,

and the perpendicular cross section is circular. In the case where the perpendicular
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cross section is not circular, then the shape of nucleus will be triaxial[52, 53]. In

general if γ is a multiple of 60◦ then the shape is axial, and when γ is not a multiple

of 60 it will be triaxial. Thus when γ is a multiple of 60◦ then the radius along

two of the three axis in Eqs. 2.72, 2.73, 2.74 are equal. As we can see :

If γ = 0, the symmetry axis is Z axis, and Rx = Ry.

If γ = 60, the symmetry axis is Y axis, and Rx = Rz.

If γ = 120, the symmetry axis is X axis, and Ry = Rz .
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Chapter 3

Result and Discussion

In this chapter we present the results of our constrained calculations described in

the previous chapter.

The constrained calculations were carried in the β−γ plane where β was taken to

be between 0.0 and 0.6 in step of 0.05, and γ in the range of 0◦, 60◦] with a step

size γ = 5o.

Systematic constrained triaxial calculations mapping the quadrupole deformation

space defined by β2 and γ have been performed for A≈30 isotopes, using DD-

PC1, NL3*, and DD-ME2 parametrizations. For each isotopic chain, we locate

the ground state deformation,and find the value of several physical properties. We

also see how the shape of the nucleus in the ground state evolve along the isotopic

chain, and how it will effect the physical properties.

In the beginning, we will plot the potential energy surfaces for all the nuclei under

consideration using the previously mentioned parameter sets.



22

3.1 POTENTIAL ENERGY SURFACES

3.1.1 Ne Isotopes

For Neon isotopes (Z = 10) we consider the isotopes with neutron number N =16

up to 24. Potential energy surfaces are shown in Figures 3.1,3.2, and 3.3.

At the beginning of the chain we can see traxiality softness and the ground state

minimum is flat. However, one can see the existence of a prolate minimum near

β = 0.15 in Fig.3.1 for 26Ne. As we move along the chain the softness in potential

energy surface along the γ-direction decreases and we can see that the ground state

minimum is well localized and moves toward spherical shape. 30Ne is spherical,

which is expected since it is a doubly magic nuclei.

Figure 3.1: Potential energy surfaces of even-even Ne isotopes from neutron number
N=16 to 24 in the (β, γ) plane as functions of quadrupole deformation, obtained from a
triaxial RHB calculations with the DD-PC1 parameter set. The energies are normalized
with respect to the binding energy of the absolute minimum. The color scale shown at
the right has units of MeV and scaled such that the ground state has a 0 MeV energy.

As the number of neutron increases beyond the magic number and the two ad-

ditional neutrons are placed in new shell and thus one would expect an increase

in the ground state deformation. This in fact what happens and we see that the

deformation increases for 32,34Ne.
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Figure 3.2: Same as Fig. 3.1, but with NL3* parameter set
.

Figure 3.3: Same as Fig. 3.1, but with DD-ME2 parameter set
.

One can see that there is a slight difference between the results obtained with

different parameter sets. This difference only shows up in the lightest isotope due

to the triaxiality softness. Unlike DD-PC1, the other parameter sets predicts a

spherical shape in the ground state.

The location of the ground state minimum and comparison between the three

parameter sets are listed in Table.3.1
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Table 3.1: Location of the ground state minima indicated by (β0,γ0) for (Ne)
isotopes using DD-PC1, NL3∗, and DD-ME2 parametrization.

Nucleus DD-PC1 NL3∗ DD-ME2)
26Ne (0.15, 0◦) (0.0, 0◦) (0.0, 0◦)
28Ne (0.05, 0◦) (0.0, 0◦) (0.1, 0◦)
30Ne (0.0, 0◦) (0.0, 0◦) (0.0, 0◦)
32Ne (0.3, 0◦) (0.35, 0◦) (0.35, 0◦)
34Ne (0.50, 0◦) (0.45, 0◦) (0.45, 0◦)

3.1.2 Mg Isotopes

For Magnesium isotopes (Z = 12) we consider the isotopes with neutron number

N =10 up to 22. Potential energy surfaces are shown in Figures 3.4,3.5 and 3.6.

22Mg has two nucleons more than 20Ne which is a doubly magic spherical nuclei.

Thus it is well expected that the ground state deformation for 22Mg to be well

deformed. In fact it has a prolate ground state minimum with 0.55 as the value of

β deformation. As the number of neutrons increase as we move along the chain,

the value of the deformation decreases.

In addition, a second minimum start to develop on the oblate side. For 26Mg shape

coexistence is clearly seen mainly in the DD-PC1 calculations, where it is more

pronounced than the other parameter sets. For this nucleus the two minimum

has the same value of β, but one of them is oblate and the other one is prolate.

In addition, we also can see that there is softness in the potential energy surface

along the γ-direction. This in fact leads to some kind of discrepancy between the

three-parameter set. Any minor change in the occupation of the single-particle

states will lead to this small difference among their prediction. This is well seen

for 30Mg where NL3* predicts a prolate deformed ground-state, while the other

parameter sets predict an oblate shape.

The transition after that from deformed shape for 30Mg to spherical shape for
32Mg is expected due to the magicity of the neutron and proton subsystems.
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Figure 3.4: Potential energy surfaces of even-even Mg isotopes from neutron number
N=10 to 22 in the (β, γ) plane as functions of quadrupole deformation, obtained from a
triaxial RHB calculations with the DD-PC1 parameter set. The energies are normalized
with respect to the binding energy of the absolute minimum. The color scale shown at
the right has units of MeV and scaled such that the ground state has a 0 MeV energy.

A summary of the results is listed in Table 3.2, and are extracted from Fig.3.4,3.5

and 3.6

Table 3.2: Location of ground state minimum indicated by (β0,γ0)for (Mg)
isotopes using DD-PC1, NL3∗ and DD-ME2 parameterization.

Nucleus DD-PC1 NL3* DD-ME2
22Mg (0.55, 0◦) (0.5, 0◦) (0.5, 0◦)
24Mg (0.55, 0◦) (0.55, 0◦) (0.55, 0◦)
26Mg (0.3, 60◦) (0.3, 60◦) (0.3, 55◦)
28Mg (0.35, 0◦) (0.35, 0◦) (0.35, 0◦)
30Mg (0.15, 60◦) (0.15, 0◦) (0.2, 60◦)
32Mg (0.0, 0◦) (0.0, 0◦) (0.0, 0◦)
34Mg (0.35, 0◦) (0.35, 0◦) (0.35, 0◦)

All HF calculations [16, 54–56], as well as the FRDM [57], predict the shape of
32Mg to be spherical, which appears as a natural response of the N=20 shell closure.
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Figure 3.5: Same as Fig.3.4, but for NL3∗ parameter set

Figure 3.6: Same as Fig.3.6, but for DD-ME2 parameter set
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Figure 3.7: Potential energy surfaces of even-even Si isotopes from neutron number
N=12 to 20 in the (β, γ) plane as functions of quadrupole deformation, obtained from a
triaxial RHB calculations with the DD-PC1 parameter set. The energies are normalized
with respect to the binding energy of the absolute minimum. The color scale shown at
the right has units of MeV and scaled such that the ground state has a 0 MeV energy.

We have made further CDFT tests with the three forces used in this study. The

results are similar in all cases: the principal minimum is always at β = 0.

3.1.3 Si Isotopes

For Silicon isotopes (Z = 14) we consider the isotopes with neutron number N =12

up to 20. Potential energy surfaces are shown in Figures 3.7,3.8 and 3.9.

For N = 12, which corresponds to 26Si, there is tow ground state minimum. One

of them is oblate and the other one is porlate with very small difference in energy

that is less than 0.5 MeV. With the increment of the neutron numbers, one of the

minimum disappears and we are left with only one of them.

The ground state of 28Si is experimentally known to be oblate[59], that is in fact in

well agreement with the prediction of our calculations. 26,28,30,32Si potential energy

surfaces show a deep oblate minimum in all of the three used parameter sets.
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Figure 3.8: Same as Fig.3.7, but for NL3∗ parameter set.

Figure 3.9: Same as Fig.3.7, but for DD-ME2 parameter set.

In table3.3 the location of the ground state minimum for Si isotopes and compared

among the three parameter set, and with Skyrme interaction SGII[58]. All of

them predict an oblate minima. However, a small variation in the value of β2

deformation exist when compared with SGII. However, one has to remember that

in our calculations the step of β3 deformation is 0.05 which could be a source of

this small deviation

26Si and 26Mg are mirror nuclei of each other, that is the number of proton and

neutron in the first one is the same as the number of neutron and proton in the
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Table 3.3: Location of the ground state minima indicated by (β0,γ0)for
(Si) isotopes using DD-PC1, NL3∗, DD-ME2 and Skyrme interaction SGII[58]

parametrization.

Nucleus DD-PC1 NL3∗ DD-ME2 SGII
26Si (0.35, 60◦) (0.35, 0◦) (0.35, 30◦) (0.231, 60◦)
28Si (0.35, 60◦) (0.35, 60◦) (0.35, 60◦) (0.276, 60◦)
30Si (0.25, 60◦) (0.2, 60◦) (0.25, 60◦)
32Si (0.2, 60◦) (0.15, 60◦) (0.2, 60◦)
34Si (0.0, 0◦) (0.0, 0◦) (0.0, 0◦)

Figure 3.10: Potential energy surfaces of 26Si(left), 26Mg(right)

second one respectively. Both nuclei in our calculations are found to have the same

value of deformation and shape in the ground state.

Fig. 3.10, shows the potential energy surfaces for 26Si and 26Mg, respectively.

Indeed, the two energy surfaces are similar to each other, and they show the

exitance of two ground state minimum, an oblate and a prolate. The energy

difference between the oblate and the prolate minima is 0.15 MeV for 26Si and

0.32 MeV for 26Mg.

3.1.4 S Isotopes

For Sulfur isotopes (Z = 16) we consider the isotopes with neutron number N =8

up to 16. Potential energy surfaces are shown in Figures 3.11, 3.12, and 3.13.

At the beginning of the chain, N = 8, spherical ground state shape appears, as

expected. However, as the neutron number increases beyond the magic number

one can see that the location of the ground state minima is moving to the right.



30

Figure 3.11: Potential energy surfaces of even-even S isotopes from neutron number
N = 8 to 16 in the (β, γ) plane as functions of quadrupole deformation, obtained from a
triaxial RHB calculations with the DD-PC1 parameter set. The energies are normalized
with respect to the binding energy of the absolute minimum. The color scale shown at
the right has units of MeV and scaled such that the ground state has a 0 MeV energy.

Figure 3.12: Same as Fig.3.11, but for NL3∗ parameter set

The nucleus becomes prolate deformed with quadrupole deformation β=0.20 for
26S, β=0.35 for 28S. The addition of two extra neutrons changes the shape from

prolate to oblate. Finally, pushing it to be near prolate in 32S.

A comparison between the three used parameter sets is shown in table3.4. In

general a very good agreement is seen except for the case of 26S,where DD-ME2
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Figure 3.13: Same as Fig.3.11, but for DD-ME2 parameter set

parameter set predict a spherical shape instead of axially deformed as the other

parameter sets.

Table 3.4: Location of the ground state minima indicated by (β0,γ0) for (S)
isotopes using DD-PC1, NL3∗ and DD-ME2 parametrization.

Nucleus DD-PC1 NL3* DD-ME2
24S (0.0, 0◦) (0.0, 0◦) (0.0, 0◦)
26S (0.2, 0◦) (0.15, 0◦) (0.0, 0◦)
28S (0.35, 0◦) (0.35, 0◦) (0.35, 0◦)
30S (0.25, 60◦) (0.2, 60◦) (0.25, 60◦)
32S (0.25, 0◦) (0.25, 0◦) (0.25, 0◦)

3.1.5 Ar Isotopes

For Argon isotopes (Z = 18) we consider the isotopes with neutron number N =16

up to 24. Potential energy surfaces are shown in Figures 3.14,3.15, and 3.16.

At the beginning of the chain, 26Ar isotope takes a spherical shape, which is

expected because of Neutron’s magic number(N=8). As the number of neutrons

increases the value of β2 deformations in the ground state increases and the shape

starts to deviate from the spherical shape to be axially deformed (prolate) as seen
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Figure 3.14: Potential energy surfaces of even-even Ar isotopes from neutron number
N = 16 to 24 in the (β, γ) plane as functions of quadrupole deformation, obtained from a
triaxial RHB calculations with the DD-PC1 parameter set. The energies are normalized
with respect to the binding energy of the absolute minimum. The color scale shown at
the right has units of MeV and scaled such that the ground state has a 0 MeV energy.

in 28,30Ar isotopes with β=(0.1,0.2). Then it becomes oblate in 32,34,36 with β=0.2

for all three parameter sets(see table 3.5). It goes back to spherical shape in 38Ar

due to that fact it is a doubly magic nuclei ( has magic numbers in both proton

and neutron subsystem)

In addition, we also can see that there is softness in the potential energy surface

along the γ-direction. This, in fact, leads to some kind of discrepancy between the

three-parameter set. Any minor change in the occupation of the single-particle

states will lead to this small difference among their predictions. This is well seen

for 40Ar where DD-ME2 predicts an oblate deformed ground-state, while NL3∗

predicts a prolate shape with β=0.05 and spherical shape using DD-PC1. As we

reach A=42, we notice that the ground state regains axial(prolate) with β2=0.15
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Figure 3.15: Same as Fig. 3.14, but for NL3∗ parameter set

Figure 3.16: Same as Fig. 3.14, but for DD-ME2 parameter set
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in DD-PC1, but it is oblate using other parameters and still soft in the γ direction.

Table 3.5: Location of the first ground state minima indicated by (β0,γ0)for
(Ar) isotopes using DD-PC1, NL3∗ and DD-ME2 parameterization.

Nucleus DD-PC1 NL3* DD-ME2
26Ar (0.0, 0◦) (0.0, 0◦) (0.0, 0◦)
28Ar (0.1, 0◦) (0.0, 0◦) (0.15, 0◦)
30Ar (0.2, 0◦) (0.2, 0◦) (0.25, 0◦)
32Ar (0.2, 60◦) (0.15, 60◦) (0.2, 60◦)
34Ar (0.2, 60◦) (0.2, 60◦) (0.2, 60◦)
36Ar (0.2, 60◦) (0.2, 60◦) (0.2, 60◦)
38Ar (0.0, 0◦) (0.0, 0◦) (0.0, 0◦)
40Ar (0.0, 0◦) (0.05, 0◦) (0.1, 60◦)
42Ar (0.15, 00◦) (0.15, 60◦) (0.15, 60◦)

3.1.6 Ca Isotopes

For Calcium isotopes (Z = 20), we consider the isotopes with neutron number N

=14 up to 24. Potential energy surfaces are shown in Figures 3.17, 3.18, and 3.19.

The results of deformation parameters β2 which is listed in the table 3.6, shows

that the values of β2 in all isotopes are used are zeros this is due to the protons

magic number(Z = 20) (which produce more stability for nucleus).

Table 3.6: Location of the ground state minima indicated by (β0,γ0)for (Ca)
isotopes using DD-PC1, NL3* and DD-ME2 parameterization.

Nucleus DD-PC1 NL3* DD-ME2
34Ca (0.0, 0◦) (0.0, 0◦) (0.0, 0◦)
36Ca (0.0, 0◦) (0.0, 0◦) (0.0, 0◦)
38Ca (0.0, 0◦) (0.0, 0◦) (0.0, 0◦)
40Ca (0.0, 0◦) (0.0, 0◦) (0.0, 0◦)
42Ca (0.0, 0◦) (0.0, 0◦) (0.0, 0◦)
44Ca (0.0, 0◦) (0.0, 0◦) (0.0, 0◦)
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Figure 3.17: Potential energy surfaces of even-even Ca isotopes from neutron number
N = 14 to 24 in the (β, γ) plane as functions of quadrupole deformation, obtained from a
triaxial RHB calculations with the DD-PC1 parameter set. The energies are normalized
with respect to the binding energy of the absolute minimum. The color scale shown at
the right has units of MeV and scaled such that the ground state has a 0 MeV energy.

Figure 3.18: Same as Fig.3.17,but for NL3∗ parameter set
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Figure 3.19: Same as Fig.3.17,but for DD-ME2 parameter set

3.2 PHYSICAL PROPERTIES

Shape evolution is coupled to the evolution of several physical properties of the

ground state of the atomic nuclei, such as: the binding energy(BE), radii for

protons and neutrons, two neutron separation energy(S2n) and root mean square

charge radii(Rc).

A smooth transition in the ground state deformation along the isotopic chain will

be seen as a smooth evolution of these properties. Any sudden jump in the value of

the ground state deformation will be reflected as a sharp jump in these properties.

3.2.1 Binding Energy

Binding energy is defined as the minimum energy that holds a nucleus together

and it is directly related to the stability of nuclei. Figs. 3.20 and 3.21 display the

binding energies and the binding energies per nucleon(E/A), respectively.

It may be seen from figure 3.20 that for all the isotopic chains as we increase the

neutron numbers the value of the binding energy increases. This can be explained
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Figure 3.20: The Binding energies of isotope chains for nuclei: Ne, Mg, Si, S, Ar and
Ca, obtained by our DD-PC1, NL3∗ and DD-ME2 calculations as a function of Neutron
Number. It is compared with the available experimental data[62],[58], FRDM[62], and

RMF[62]

by considering light nuclei with small neutron numbers. At the beginning of each

chain proton numbers are greater than neutron numbers. Thus the Coulomb

repulsion force is large and decreases the stability of the nucleus. The increase

in the neutron numbers reduces the repulsion force and add more stability to the

atomic nuclei.

The general trend of our three parameter sets used in the calculations is in agree-

ment with each other and with the results obtained from [58, 62]. However, one

might notice that there is some kind of deviation in the Ne isotopic chain results.
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Figure 3.21: Energy per nucleon of isotope chains for nuclei: Ne, Mg, Si, S, Ar and
Ca, obtained by our DD-PC1, NL3∗ and DD-ME2 calculations as a function of Neutron

Number, and compared with the available experimental data[62],[58].

Similarly, one notice the same behavior for the binding energy per nucleon plotted

in Fig.3.21.

3.2.2 Two neutron separation energy S2n

The two-neutron separation energy is an important quantity in analyzing the sta-

bilities of a nucleus. The two-neutron separation energy is defined as:

S2n = BEN,Z −BEN−2,Z
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Figure 3.22: The two-neutron separation energies (S2n), obtained by our DD-PC1,
NL3∗ and DD-ME2 calculations as a function of Neutron Number, and compared with

the available experimental data[62].

The calculated two-neutron separation energies S2n of even-even isotopes, as a

function of the neutron number N are shown in Fig. 3.22 in comparison with the

available experimental data[62]. In Fig. 3.22, it is seen that the results with the

density-dependent models reproduce the experimental data quite well. Focusing

on the behavior, S2n gradually increases with N, and a strong abrupt increase is

clearly seen at N=20 in experimental and theoretical curves for Ne, Mg, Ar and

Ca Nuclei, which indicates the closed-shell at this magic neutron number.

One can also notice a sudden change in the values of S2n for Si isotopes at N =14,

this is due to the fact that 26Si has two ground state minimum while 28Si has one

minima.
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3.2.3 Nuclear Radii

The rms charge, proton and neutron radii are shown in Figs. 3.23,3.24 and 3.25

respectively. The obtained results from all of these models are consistent with

each other with very limited variations.

The charge radii shows a strange behavior, for the light isotopes of some the

chains in the figures exhibit a higher charge radius as compared to their heavier

counterparts. The charge radii assume a minimum value for some intermediate-

mass nuclei and again increases for higher masses. This effect is well know as the

isotopic shift. As the number of proton in the nucleus is larger than the neutron

number, the coloumb repuslion force causes the proton to go away from eachother

as much as possible. This leads to the increase of the radius. However, as the

neutron number increases it decreases the couloumb repuslion force between the

protons, and this will reduce the size of the nucleus. But as more neutrons we add

the radius starts to increase again due to the increase of the mass number.

The experimental charge radii.[61] of several nuclei for each isotopic chain are

shown by solid up triangles in the figures. It can be seen there is a good agreement

with the known experimental data. If we compare our results with the relativistic

mean-field calculations shown in Fig. 3.22 in Ref.[16], then we will have a very

good agreement with the values of the ground state bulk properties.

The charge radius, Rc,is related to the proton radius, Rp, by:

R2
c = R2

p + 0.64(fm)2 (3.1)

where the factor 0.64 is a correction due to the finite size of proton.

we see in Fig. 3.24, that the proton radii are almost equal throughout the isotopic

chain, and take the shape of charge radii.



41

Figure 3.23: The charge (Rc) radii of nuclei obtained by our DD-PC1, NL3∗ and
DD-ME2 calculations as a function of Neutron Number. A few available experimental

charge radii is shown for comparison.

The neutron radii in Fig. 3.25 shows an increasing trend with neutrons number

for all the isotopic chains. For neutron-deficient (proton-rich) nuclei the neutron

radius is much smaller than the corresponding charge radius. For the isotopic

chain of Ca, the neutron radii show usual parabolic behaviour between A = 34 (N

= 14) and A = 44 (N = 24).
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Figure 3.24: The proton (Rp) radii of nuclei obtained by our DD-PC1, NL3* and
DD-ME2 calculations as a function of Neutron Number.
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Figure 3.25: The neutron (Rn) radii of nuclei obtained by our DD-PC1, NL3* and
DD-ME2 calculations as a function of Neutron Number.
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Chapter 4

Conclusion

In this thesis, the covariant density functional theory has been employed to in-

vestigate the shape deformation and the ground state properties of the even-even
26−34Ne, 22−34Mg, 26−34Si, 24−32S, 26−44Ar and 34−44Ca chain isotopes, using three

parametrizations: The density-dependent point-coupling DD-PC1, NL3*, and The

density-dependent meson-exchange DD-ME2. Binding energy, two neutron sepa-

ration energyS2n and rms radii for (a charge, neutrons, and protons) have been

calculated.

The potential energy curves for chain isotopes were plotted as a function of defor-

mation parameter β2 in triaxial calculations. For Ne, Our calculations establish a

deformed prolate shape at 26,28,32,34Ne with deformation β=(.05 ∼ .50). For Mg,

PES predicts there are two minima in 26Mg, one of them is oblate and the other

one is prolate at, the same appear in 26Si at β = 0.35. In the S isotopes, one can

see a prolate-oblate transition from 28,32S. For Ar isotopes, at the beginning of the

chain, the ground state has a prolate shape as in 28,30Ar, then move to be oblate

as in 32,34,36,40,42Ar. For Ca isotopes, since the proton number for Ca isotopes is a

strong magic number, it leads to spherical nuclei.

The effect of shell closure strongly affect the ground state deformation, it can be

seen from our results that spherical magic numbers such as 8 and 20 obey the shell

effects and cause the nuclei to have a spherical shape. This effect is observed for

several nuclei in our study 30Ne, 32Mg, 34Si, 24S, 26,38Ar, and all Ca isotopes.
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One can notice that the spherical shape appears in 30Ne, 32Mg, 34Si, 24S, 26,38Ar,

and all Ca isotopes under study; which proves the deformation parameters decrease

when the number of the neutrons be closer to the neutron’s magic number(8, 20),

in other words, nuclei with neutron number (N) far from a magic number are

generally deformed. It means that nuclei with magic numbers of neutrons have a

”closed shell” that encourages a spherical shape.

The ground-state binding energies and charge radii obtained show good agreement

with the data, where available[16, 61]. A smooth transition in the ground state

deformation will be reflected on the evolution of these properties, and the evolution

will be smooth. Any sudden change in the ground state deformation will cause a

sharp jump in these properties. A sharp jump in most of physical properties is

more apparent above a major close shell, such as at N=20.

The results we obtained are independent of the choice of parametrizations, and

consistent with results obtained from other models such as: FRDM[57] and HF[16,

54–56], and with the available experimental data[16, 61].
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[57] P. Möller, J. R. Nix, W. D. Meyers, and W. J. Swiatecki, At. Data Nucl. Data

Tables 59, 185 (1995).

[58] M. T. Win, K. Hagino, and T. Koike, Phys. Rev. C 83(1) (2011).

[59] Y. El Bassem, M. Oulne, Nucl, Phys. A 987, 16-28 (2019).

[60] N. Hinohara and Y. Kanada Enayo, arXiv:1008.4444v1.



50

[61] H. de Vries, C.W. De Jager and C. de Vries, At. Data Nucl. Data Tables 36

(1987) 495.

[62] M. Wang, G. Audi, A. H. Wapstra, et al. Chin. Phys. C 36:1603(2014)


	Declaration
	Dedication
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	2 Formalism
	2.1 Covariant Density Functional Theory
	2.1.1 The Lagrangian density
	2.1.2 The meson-exchange model
	2.1.3 The point-coupling model

	2.2 The Hamiltonian and the equation of motion
	2.3 Pairing correlations
	2.4 Nuclear shape and deformation

	3 Result and Discussion
	3.1 POTENTIAL ENERGY SURFACES
	3.1.1 Ne Isotopes
	3.1.2 Mg Isotopes
	3.1.3 Si Isotopes
	3.1.4 S Isotopes
	3.1.5 Ar Isotopes
	3.1.6 Ca Isotopes

	3.2 PHYSICAL PROPERTIES
	3.2.1 Binding Energy
	3.2.2 Two neutron separation energy S2n
	3.2.3 Nuclear Radii


	4 Conclusion
	Bibliography

